Receptor-mediated suppression of potassium currents requires colocalization within lipid rafts.
نویسندگان
چکیده
Expression of KCNQ2/3 (Kv7.2 and -7.3) heteromers underlies the neuronal M current, a current that is suppressed by activation of a variety of receptors that couple to the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Expression of Kv7.2/7.3 channels in human embryonic kidney (HEK) 293 cells produced a noninactivating potassium current characteristic of M current. Muscarinic receptors endogenous to HEK293 cells were identified as being M3 by pharmacology and Western blotting, producing a rise of intracellular calcium ([Ca2+](i)) upon activation. Activation of these endogenous muscarinic receptors however, failed to suppress expressed Kv7.2/7.3 current. Current suppression was reconstituted by coexpression of HA-tagged muscarinic m1 or m3 receptors. Examination of membrane fractions showed that both expressed receptors and Kv7.2 and -7.3 channel subunits resided within lipid rafts. Disruption of lipid rafts by pretreatment of cells expressing either m1 or m3 muscarinic receptors with methyl-beta-cyclodextrin produced a loss of localization of proteins within lipid raft membrane fractions. This pretreatment also abolished both the increase of [Ca2+](i) and suppression of expressed Kv7.2/7.3 current evoked by activation of expressed m1 or m3 muscarinic receptors. A similar loss of muscarinic receptor-mediated suppression of M current native to rat dorsal root ganglion neurons was observed after incubating dissociated cells with methyl-beta-cyclodextrin. These data suggested that lipid rafts colocalized both muscarinic receptors and channel subunits to enable receptor-mediated suppression of channel activity, a spatial colocalization that enables specificity of coupling between receptor and ion channel.
منابع مشابه
Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts.
The B cell Ag receptor (BCR) and CD20, a putative calcium channel, inducibly associate with cholesterol-dependent membrane microdomains known as lipid rafts. A functional association between the BCR and CD20 is suggested by the effects of CD20-specific mAbs, which can modulate cell cycle transitions elicited by BCR signaling. Using immunofluorescence microscopy we show here that the BCR and CD2...
متن کاملCD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO.
CD26 is a T cell activation antigen that contains dipeptidyl peptidase IV activity and is known to bind adenosine deaminase. The mechanism by which CD26 costimulation potentiates T cell receptor-mediated T cell activation, leading to subsequent exertion of T cell effector function, is still not clearly defined. In this article, we demonstrate that CD26 localizes into lipid rafts, and targeting ...
متن کاملPivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases.
The SK3 channel, a potassium channel, was recently shown to control cancer cell migration, a critical step in metastasis outgrowth. Here, we report that expression of the SK3 channel was markedly associated with bone metastasis. The SK3 channel was shown to control constitutive Ca(2+) entry and cancer cell migration through an interaction with the Ca(2+) channel Orai1. We found that the SK3 cha...
متن کاملAggregation of Lipid Rafts Accompanies Signaling via the T Cell Antigen Receptor
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches...
متن کاملTriglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species.
Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2009